
Science of the Total Environment 866 (2023) 161465

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Spatial–temporal evolution and driving force analysis of eco-quality in urban
agglomerations in China
Lifang Zhang a, Chuanglin Fang a,b,⁎, Ruidong Zhao a,c, Cong Zhu a, Jingyun Guan a
a College of Geography and Remote sensing Sciences, Xinjiang University, Urumqi 830046, China
b Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
c School of Geography Science, Taiyuan Normal University, Jinzhong 030619, China
H I G H L I G H T S G R A P H I C A L A B S T R A C T
http://dx.doi.org/10.1016/j.scitotenv.2023.161465
Received 1 July 2022; Received in revised form 31 O
Available online 7 January 2023
0048-9697/© 2023 Elsevier B.V. All rights reserved.
• EQ’s spatial and temporal evolution in
China’s urban agglomerations is analyzed.

• A GeoDetector model illustrates factors
affecting the main drivers of EQ.

• The Hu-line reveals a spatial relationship
in the distribution of EQ.

• EQ has improved in around 42 % of
China’s urban agglomerations.

• The driving forces of EQ in different urban
agglomerations are spatially different.
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Urban agglomerations are important spatial carriers of regional economic development, and their ecological quality (EQ)
is closely related to economic growth andhumandevelopment.However, the rapid urbanization inChina has generated a
series of EQ problems that threaten the sustainable development of the country. Therefore, it is essential to explore
changes in EQ for the development of sustainable “human–land” relations in urban agglomerations. Using GIS,
GeoDetector, Stepwise multiple regression, and Sen'trend analysis, to reveal the spatial-temporal evolution of EQ in
urban agglomerations alongwith the spatial heterogeneity of its driving forces in China. Results show that: (1) The annual
change rate of EQ of urban agglomerations ranges from−0.0312 to 0.0334. Taking the Hu-line as a boundary, the EQ of
urban agglomerations is spatially high in the east and low in the west. (2) The Global Moran's I index ranged from 0.740
to 0.687 during the study period, indicating a positive correlation in the EQ spatial distribution. The EQ of urban agglom-
erations has significant spatial agglomeration, with hot spots concentrated in the eastern region and cold spots in the
northwestern region. (3) Main drivers of EQ of urban agglomerations are elevation, population density, nighttime light
index, arable land area, real GDP per capita, precipitation, and built-up urban area (q > 10%). (4) The stepwise multiple
regression model spatially reveals that the nighttime light index, built-up urban area land and GDP per capita dominate
the ecological quality changes of urban agglomerations, accounting for 73.68 % of the total number of urban agglomer-
ations. This study provides an effective method for assessing spatial-temporal changes of EQ in urban agglomerations,
supports scientific decision-making support for the construction of ecological civilization and the development of
human–land harmony in urban agglomerations, and promotes the development and construction of “Beautiful China.”
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1. Introduction

Urban agglomerations are important carriers of economic accumula-
tion, industrialization, and urbanization. From a global perspective, urban
agglomerations have become an important carrier for the shift of the
world's economic center of gravity and determine the future pattern of
world economic development, and their status and role have become
increasingly prominent (Fang and Yu, 2017). In the context of economic
growth over recent decades, a contradiction in the process of urbanization
and development has gradually emerged between the rapidly developing
economy and ecological quality (EQ) (Dadashpoor et al., 2019; Fang
et al., 2021). Therefore, it is important to emphasize the protection of
urban ecology and improve the relationship between urban development
and the ecological environment when building harmonious “human–
land” coexistence. In China, ecology was emphasized in 1983when ecolog-
ical protection was incorporated into the basic state policy (Ministry of
Ecology and Environment of the People's Republic of China, 2020), thus
beginning an important chapter in the protection of the ecological environ-
ment in China. Since the 18th National Congress of China, there has been
vigorous promotion of the construction of ecological civilization and
ecological protection, the harmonious coexistence of humans and nature,
and continuous improvement of EQ (The 18th National Congress of the
Communist Party of China, 2012). China's 14th Five-Year Plan put forward
higher requirements for the construction of ecological civilization (Ministry
of Ecology and Environment of the People's Republic of China, 2020;
Central People's Government of the People's Republic of China, 2021).
The ability to promptly assess spatial and temporal changes in EQ is vital
to the region's sustainable development. Thus, this research focuses on
how to effectively build and evaluate EQ.

The ecological environment provides natural resources and living con-
ditions for humans and is a prerequisite for human and social progress.
EQ can reflect the strengths and weaknesses of the ecological environment,
and its accurate evaluation can provide an important reference for solving
regional ecological problems and promoting the sound development of
society and ecology (Wang et al., 2019). Extant studies on EQ evaluation
have used a range of methods, including the Driving–Pressure–State–
Impact–Response (DPSIR) (Ke et al., 2021; Xu, 2013), Pressure-State-
Response (PSR) (Xie et al., 2015), artificial neural network (Gebler
et al., 2018), ecological footprint (Khan et al., 2021), Minimal Cumulative
Resistance (MCR), and coupling coordination (Fang et al., 2016a; Fang
and Ren, 2017) models. However, despite these methods' wide use, and
the significant volume of research results obtained, the data have mainly
been obtained from statistical yearbooks and the indicator construction
has been deeply subjective, bringing various limitations for assessing
large regions.

Since the 1970s, remote sensing (RS) has been widely used in EQ
research because of its extensive coverage and data mapping, and its high
efficiency, which can provide a deeper understanding of the dynamic pro-
cesses within the world's land, oceans, and lower atmosphere (Avtar
et al., 2020; Shao et al., 2020; Xu et al., 2021). The net primary productivity
(NPP) of vegetation and the leaf area index (LAI) are relatively common
ecological indices. Pan et al. (2021) extracted and dissected the response
of NPP and LAI to environmental changes using RS images and determined
the relationship between them. Land surface temperature (LST) plays a vital
role in the analysis of surface biogeochemical processes as a key environ-
mental parameter in the study of regional microclimates (Azmi et al.,
2021; Subhanil et al., 2019), and has mainly been used to study topics
such as urban climate change and urban morphology (Azmi et al., 2021;
Lemoine-Rodríguez et al., 2022; Singh et al., 2017). Since vegetation
is the main producer in the ecosystem, it is both time-consuming and
labor-intensive to calculate vegetation cover artificially. Obtaining NDVI
(on vegetation cover) from RS is a highly accurate way of assessing vegeta-
tion dynamics and generates significant savings in terms of human and
material resources (Guo et al., 2018; Liu et al., 2022; Zhang et al.,
2021b). The dryness index, also known as the normalized difference
built-up index (NDBI), characterizes the urban building index and dryness
2

to explain ecological conditions and is an important spectral index in RS
imagery for which a significant correlation has been found with LST
(Guha et al., 2018; Guha et al., 2021). The normalized difference water
index (NDWI) is used to interpret the water content of vegetation and
describes the physical changes associated therewith, which is important
for ecological assessment and drought monitoring in arid areas (Ding
et al., 2017). A series of studies have shown that RS satellite images are
more reliable than field measurements (Abdulateef and Al-Alwan, 2020;
El-Hattab et al., 2018).

While RS technology has yielded a significant volume of EQmonitoring
research results, the following shortcomings remain. (1) The use of only one
indicator to evaluate the state of EQ is insufficient due to the complexity
and diversity of the natural environment. (2) Previous studies have relied
primarily on the manual downloading and processing of RS data, not only
resulting in a large workload and low error tolerance rate but also wasting
a significant amount of research time. (3) The extant research has tended to
focus more on evaluating indicators and spatial changes, along with the
many driving factors that influence changes in EQ, with less focus on the
drivingmechanisms. In a bid to address the abovementioned shortcomings,
a novel integrated RS ecological index is used to estimate the EQ of urban
agglomerations. This is constructed in line with the approach used by Xu
(2013), which involves combining greenness (NDVI), heat (LSI), NDBI,
and humidity (WET), greatly compensating for the shortcomings of RS
single-index evaluation (Shan et al., 2019). Meanwhile, an average value
is used to circumvent these drawbacks to compensate for the instability of
the data in the time series, as has previously been applied to a study of
PM2.5 with positive results (Zhou et al., 2019). Moreover, the Google
Earth Engine (GEE) big data platform hosts the Moderate-Resolution
Imaging Spectroradiometer (MODIS), Landsat, and other massive RS data
products, with powerful cloud computing and storage capabilities, thus
effectively addressing the need for a mechanism with which to evaluate
large areas, large scales, and long time series (Xiong et al., 2021). Finally,
a geostatistical approach (the GeoDetector model) is used to detect the spa-
tial heterogeneity of EQ and reveal the driving mechanisms. This approach
has previously been applied to and yielded research results and recognition
in areas such as disease, meteorology, economy, population, and nature
(Luo et al., 2016; Wang and Xu, 2017; Wang et al., 2010).

In recent years, the characteristics and contradictions of urbanization
and ecological environment in the process of regional development have
attracted the attention of geographers. Naturally, EQ, with its strong appli-
cability and scientific nature, has been widely used by scholars in the study
of human-land relations. Boori et al. (2021) conducted an ecological
vulnerability analysis of Russian cities based on the EQ, while Firozjaei
et al. (2021) used the remote sensing index to quantify ecologically barren
areas in Europe. Zhang et al., 2022 explored the evolution of the ecological
environment and the driving factors in the Chang-Zhu-Tan urban area
based on GEE's remote sensing ecological index. To date, domestic and
foreign research on EQ has been limited to small regions such as economic
zones or watersheds (Zheng et al., 2022), with a lack of research from a
larger regional and global perspective. Meanwhile, the extant research on
EQ has tended to focus on evaluation and spatial analysis and has failed
to study its driving mechanisms in depth.

China is both the world's largest developing country and the center of
future development and research on global urban agglomerations (Fang,
2019). Its level of urbanization increased from 7.30 % in 1949 to 59.58 %
in 2018 (Yao et al., 2021), which is a remarkable achievement. However,
its ecological environment has become more fragile alongside the develop-
ment of urbanization and industrialization, giving rise to a series of
environmental pollution problems. The need to address the contradiction
between economic development and ecological protection has thus become
even more pressing, and has led to widespread concern over ecological
issues (Fang et al., 2016a; Fang et al., 2017). Urbanization level has been
used as an important indicator for studying regional ecological security,
ecosystem services, ecological risk, and EQ (Qiu et al., 2021; Tang et al.,
2021; Wang et al., 2022). China's 14th Five-Year Plan clearly states that
the continuous improvement of environmental quality is vital to promote
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ecological civilization and ensure China remains beautiful (National
Development and Reform Commission, 2021). Therefore, timely monitor-
ing and evaluation of the EQ of urban agglomerations is of great practical
significance in terms of realizing the high-quality development of China's
urban agglomerations.

This study aims to answer the question, “What are the spatial and tem-
poral characteristics of EQ of Chinese urban agglomerations at different
scales over the past 20 years? What are the mechanisms driving the EQ of
different urban agglomerations? Is it natural factors or human activities
that dominate the EQ of urban clusters?What is the role of human activities
in improving or worsening the EQ of urban agglomerations? There are no
clear answers to the above questions. In this study, we use different models
to try to step out a parameter, or a smaller set of runs, to find out the sensi-
tivity of the driving factors, and seek the sensitivity of human activities for
different urban clusters under the assumption that they are not influenced
by natural conditions. It is against this background that it has become
necessary to monitor spatial and temporal changes in the EQ of China's
urban agglomerations, explore their spatial evolution characteristics,
attempt to identify the main driving factors, and provide a scientific basis
for the development of sustainable decision-making. The main objectives
of the study are therefore as follows:

(1) To evaluate and monitor the spatial–temporal changes of EQ in 19
urban agglomerations in China from 2000 to 2020.

(2) To explore the spatial differentiation and spatial correlation charac-
teristics of EQ of urban agglomerations in China.

(3) To uncover the mechanisms driving the EQ of urban agglomerations
in China.

Based on the GEE and GIS platform, this study combines RS imagery,
land use data, and meteorological and socioeconomic data to construct
EQ indicators, analyze the EQ changes and spatial differentiation character-
istics of urban agglomerations, and apply the GeoDetector model and
stepwise multiple regression model to identify factors of EQ in urban
agglomerations to gain comprehensive insights into the drivers of EQ,
with a view to actively promoting the construction of ecological civilization
Fig. 1. Schematic diagram of China's u
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in urban agglomerations in China, realizing human–land harmony, and
providing a scientific basis and theoretical guidance for the construction
of a “Beautiful China.”

2. Study area and data sources

2.1. Introduction to the study area

The study area comprises the 19 urban agglomerations of China pro-
posed in the National New-type Urbanization Plan (2014–2020) (Fig. 1).
These are made up of five national-level urban agglomerations (the
Beijing–Tianjin–Hebei, Yangtze River Delta, Pearl River Delta, Middle
Reaches of Yangtze River, and Chengdu–Chongqing urban agglomeration),
eight regional, medium-sized urban agglomerations (Central and southern
Liaoning, Shandong Peninsula, West Coast, Harbin–Changchun, Central
Plains, Guanzhong, and Beibu Gulf urban agglomerations, plus the urban
agglomeration on the northern slope of the Tianshan Mountains), and six
local, small urban agglomerations (the Jinzhong, Hubao–Egyu, Central
Yunnan, Central Guizhou, and Lanxi urban agglomerations, plus the
urban agglomeration along the Yellow River in Ningxia) (Fang et al.,
2021; Fang et al., 2015). While the population and economic clustering
role of urban agglomerations continued to emerge up to the end of 2019,
these 19 urban agglomerations account for around 25 % of the land area
in China, support >75 % of the country’s urban population, and contribute
>80 % of China's GDP.

2.2. Data sources and preprocessing

The research data mainly include MODIS RS image data, land use data,
air quality data, meteorological data, and socioeconomic data (Fig. 2),
which are described as follows:

(1) RS data: MODIS series RS images are used to construct the long-term
series of EQ index (2000−2020). The four ecological components (NDVI,
WET, LST, and NDBI) based on the GEE cloud platform were selected
rban agglomeration planning area.



Fig. 2. Research data sources.

L. Zhang et al. Science of the Total Environment 866 (2023) 161465
from the NASA (https://earthdata.nasa.gov/)MODIS product library as the
data source for the July–September period for each year of study. NDVI is
derived from the MOD13A1 V6 dataset, LST from the MOD11A2 V6
dataset, and WET and NDBI from the MOD09A1 dataset. To ensure the re-
liability and smoothness of the EQ, the datawere averaged over three years,
with the intermediate years used as the basis for the study data. For exam-
ple, the EQ of the urban agglomerations in 2010 is the summed average of
the EQ values for 2009, 2010, and 2011.

(2) Socioeconomic data: The nighttime light indices were sourced from
an extended time series of cross-sensor calibrated global NPP-VIIRS nighttime
light data (2000−2021) (Chen et al., 2021). Population density data
(2000–2020) were sourced from WorldPop data published by the Geodata
Institute, University of Southampton, UK. Real GDP per capita (2000–2020)
and urbanization level data (2000–2020) were calculated from regional
statistical yearbooks (National Bureau of Statistics of China (NBS): http://
www.stats.gov.cn/) and national economic and social development statistical
bulletins, with various missing data supplemented using more recent years.

(3) Other data: Land use data (2000–2020) were used to extract the
arable land and built-up urban area of the urban agglomerations from the
30 m annual land cover datasets and its dynamics in China from 1990 to
2020 (Yang and Huang, 2021) (https://zenodo.org/record/5210928).
Elevation data were obtained from the National Geospatial Data Cloud
(http://www.gscloud.cn/) to extract elevation factors with a resolution of
90 m. Air quality data including PM 2.5 (2000–2020) (particulate matter
2.5)and CO2(carbon dioxide)were obtained from National Earth System
Science Data Center, National Science & Technology Infrastructure of
China (http://www.geodata.cn) (Wei et al., 2021) and the results of Shan
et al. (2020), respectively. Meteorological data, including annual average
precipitation (2001−2020) and temperature data (2000–2020) (Peng
et al., 2019), were obtained from the National Data Center for Earth System
Science & Technology Infrastructure of China (http://www.geodata.cn), a
national science and technology infrastructure platform, through raster
conversion and processing by GIS software.

3. Methodology

3.1. EQ index construction

The four ecological indicators of greenness, wetness, heat and dryness
are intimately connected with EQ (Zhang et al., 2022). Therefore, using
4

the GEE platform, the MODIS data required to integrate the four important
indicators reflecting the EQ index (NDVI, WET, LST, and NDBSI represent
green, wet, hot and dry, respectively). They synthesize the EQ conditions
of the area (Xu, 2013) through the following equation and steps (Fig. 3):

RSEI ¼ PCA f NDVI;WET; LST;NDBSIð Þ½ � ð1Þ

Wet ¼ C1ρred þ C2ρnir1 þ C3ρblue þ C4ρgreen
þC5ρnir2 þ C6ρswir1 þ C7ρswir2

ð2Þ

NDBSI ¼ IBI þ BI
2

ð3Þ

IBI ¼
2ρswir1

2ρswir1 þ ρnir1
−

ρnir1
ρnir1 þ ρred

þ ρgreen= ρgreen þ ρswir1
� �� �

2ρswir1
2ρswir1 þ ρnir1

þ ρnir1
ρnir1 þ ρred

þ ρgreen= ρgreen þ ρswir1
� �� � ð4Þ

BI ¼ ρswir1 þ ρredð Þ− ρnir1 þ ρblueð Þ½ �
ρswir1 þ ρredð Þ þ ρnir1 þ ρblueð Þ½ � ð5Þ

where NDVI denotes greenness, considering the saturation problem of
NDVI in areas with high vegetation coverage, and EVI is used as the green
component. Since the MOD13A1 V6 image set already contained the EVI
layer, there was no need to calculate the EVI separately, the data were syn-
thesized at a spatial resolution of 500m, using the best pixels over a 16-day
period (Zheng et al., 2020). WET denotes wetness, where ρred, ρnir1, ρblue,
ρgreen, ρnir2, ρswir1, and ρswir2 represent the reflectance of the seven bands of
MOD09A1 images (Zhang et al., 2002). The coefficients of the respective
bands of the multiband MODIS images are as follows: c = 0.11471, c =
0.24892, c = 0.24083, c = 0.31324, c = −0.31225, c = −0.64166,
and c = −0.50877 (Xu et al., 2019). LST denotes heat, and the heat
component was derived from the DLST layer of the MOD11A2 V6 dataset,
providing an 8-day average land surface temperature at 1 km spatial resolu-
tion. As in previous studies, the third component of the k-t-transformed
multispectral images was used to characterize the wetness component of
RSEI (Todd and Hoffer, 1998). NDSI denotes dryness. The normalized
difference build-up and soil index (NDBSI) was constructed based on the
bare soil index (Hu and Xu, 2018; Rikimaru et al., 2002) and the index-
based built-up index (IBI) (Xu, 2008), where ρred, ρblue, ρgreen, ρnir1, and
ρswir1 represent the surface reflectance of the corresponding bands in the

https://earthdata.nasa.gov/
http://www.stats.gov.cn/
http://www.stats.gov.cn/
https://zenodo.org/record/5210928
http://www.gscloud.cn/
http://www.geodata.cn
http://www.geodata.cn


Fig. 3. Technical framework.
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MOD09A1V6 images. Principal component analysis was used to determine
the weighting method, and any inconsistency between the indicator scales
was eliminated through normalization.When theRSEI is close to 1 the EQ is
considered to be high, and low when it is close to 0.

3.2. Spatial agglomeration analysis method

Spatial autocorrelation analysis refers to the geospatial correlation of
the attribute values of a study object caused by its geographical order or
location. The spatial correlation of EQ can be further explored in different
spatial and temporal contexts, thus giving it strong academic research
value in terms of exploring its intrinsic laws. For this reason, academics usu-
ally adopt spatial autocorrelation methods to study the spatial clustering
and change patterns of EQ.

3.2.1. Spatial autocorrelation analysis
TheGlobalMoran's I index tests the global spatial autocorrelation of EQ.

A Moran's I index that is >0 indicates a positive correlation, with larger
values indicating greater spatial agglomeration of EQ. A Moran's I index
of <0 shows a negative spatial correlation, with smaller values indicating
greater spatial dispersion of EQ. The formula is as follows (Anselin, 1995;
Cliff and Ord, 1982; Moran, 1950):

I ¼ n
SO

�
Pn

i¼1

Pn
j¼1 WijZiZ jPn
i¼1 Z

2
i

，SO ¼ ∑n
i¼1∑

n
j¼1Wij，Zi ¼ Yi−Y ;Z j

¼ Y j−Y ð6Þ

where I is the global spatial autocorrelation index, Yi and Yj are the
observed air quality values of i and j, respectively, with Y as the mean
value, andWij is the spatial weightmatrix, usually taken to be 1 for adjacent
cells and 0 for others. I ∈ [−1, 1]; when I ∈ [−1, 0], it indicates a negative
correlation between regional units. n is the number of study units; when I=
0, it indicates no correlation between regional units, and when I∈[0, 1], it
indicates a positive correlation between regional units. A Moran's I index
closer to 1 indicates a closer relationship between the attribute values of
the regional units; a value closer to 0 indicates that the attribute values
are not correlated between the regional units; and a value closer to −1
indicates a greater difference in the attribute values between the units.

3.2.2. Hot-spot analysis (Getis-Ord Gi*)
Hot-spot analysis measures local autocorrelation characteristics that

identify high and low EQ clusters in urban agglomerations. The high and
low values of the Getis-Ord Gi* index measure the local clustering of cold
5

and hot spots in the spatial pattern of EQ in urban agglomerations (Getis
and Ord, 1996). The formula is as follows.

G�
i dð Þ ¼ ∑n

j¼1Wij dð ÞX j=∑n
j¼1X j ð7Þ

Z G�
i

� � ¼ G�
i −E G�

i

� �� 	
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR G�

i

� �q
ð8Þ

whereGi
∗(d) is the statistic of each spatial unit i based on the spatial distance

weight Wij(d)，and Z(Gi
∗) is the standardized statistic of the Gi

∗(d) test—if
the value is significantly positive, it indicates a hot-spot cluster, and vice
versa, a cold-spot cluster. Xj is the attribute value of spatial unit j. E(Gi

∗)
and VAR(Gi

∗) are the mathematical expectation and coefficient of variation
of Gi

∗(d), respectively.

3.3. The estimation of Sen's slope

Sen's slope method utilizes the median of a sequence to identify a trend,
and this approach can, to a certain extent eliminate the influence of data
anomalies in trend tests and reduce noise interference (Sen, 1968). The
calculation formula is as follows:

β ¼ Median
x j−xi
j−i

� �
;∀ j > i ð9Þ

where xi and xj represent the data values (j > i) at times i and j, respectively.
The trend degree β is used to judge the rise and fall of the time series trend.
When β > 0, the time series shows an upward trend; otherwise, it shows a
downward trend.

The Mann–Kendall (M–K) significance test is generally combined with
Sen's slope method to complete the significance test of sequence trends
(Mann, 1945; Gocic and Trajkovic, 2013). The formulas are as follows:

Z ¼

Sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp S > 0ð Þ

0 S ¼ 0ð Þ
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp S < 0ð Þ

8>>>><
>>>>:

ð10Þ

S ¼ ∑n−1
i¼1 ∑n

i¼1 sgn x j−xi
� � ð11Þ

Var Sð Þ ¼ n n−1ð Þ 2nþ 5ð Þ
18

ð12Þ

sgn x j−xi
� � ¼

1 x j−xi > 0
0 x j−xi ¼ 0

−1 x j−xi < 0

8<
: ð13Þ

where n represents the length of the time series, xj and xi are the data values
at times j and i (j > i), respectively, and sgn (xj − xi) is the symbolic func-
tion. Under a set significance level α of, |Z| > u1− α/2 represents a signif-
icant change in the time series. When |Z| is >1.65, 1.96, and 2.58, it means
that the time series has passed the significance test at 90%, 95%, and 99%
probability, respectively. The method is calculated in MATLAB software.

3.4. GeoDetector

The mechanisms that drive the spatial and temporal evolution of EQ in
urban agglomerations are multifaceted and can be scientifically and ratio-
nally detected using a GeoDetector model. Wang et al. (2010) demon-
strated that GeoDetector can directly detect the magnitude of the driving
factors in the distribution of EQ. Therefore, in this paper, the GeoDetector’s
factor detection method is used to investigate the magnitude of the
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explanatory power of each factor on EQ. The factor detection equation is as
follows:

q ¼ 1 �
∑
L

h¼1
Nhσh

2

Nσ2 (14)

where q denotes the explanatory strength of a factor on the spatial and tem-
poral distribution of EQ,with a value range of [0,1], h=1,…, L is the num-
ber of levels of EQ impact factor,Nh andN are the number of samples of EQ
influence for factor level h and the study area, respectively, and σh and σ are
the variance of EQ values of level h and the whole study area, respectively.
In the results, the higher the q-value of a factor, the stronger the explana-
tory power of that factor on the EQ of the study area. A factor with q = 0
has no relationship with the distribution of EQ in the study area. When q
= 1, the factor completely controls the distribution of EQ in the study
area. q takes values in the range [0,1], and the larger the value of q, the
greater the driving effect of factor q on EQ.

3.5. Stepwise multiple regression model

A multiple stepwise regression model was used to analyze the main
drivers affecting the EQ of China's urban agglomerations. The ultimately
identified regression and predictor variables are shown by Eq. (15):

EQ∼P1þ P2þ P3þ P4þ P5 ð15Þ

where P1 represents the Nighttime light index; P2, P3,P4 and P5 represent
the Arable land area, Population density, GDP per capita, and Built-up
urban area. This study used the LMG model to measure the relative impor-
tance of different drivers to the EQ change in China's urban agglomerations.
The LMG model was bootstrapped using1000 replicates, yielding a 95 %
confidence interval. This method uses the R package “relaimpo” for calcu-
lations (Gocic and Trajkovic, 2013; Groemping, 2006).

4. Results and analysis

4.1. Spatial–temporal variation characteristics of EQ of urban agglomerations in
time series

From the spatial pattern of the annual average ecological quality from
2000 to 2020 (Fig. 4a), the ecological quality of China's urban agglomera-
tions is generally bounded by the Hu-line, with a general trend of higher
in the east and lower in the west. From the multi-year EQ averages, the
high values (>0.6) are concentrated in the northeastern and eastern coastal
urban agglomerations of China, the urban agglomerations with EQ aver-
ages between 0.4 and 0.6 are mainly located in the southern part of
China, and the areas with EQ averages between 0.2 and 0.4 are mainly
located in the western urban agglomerations of the Hu Huanyong Line.
the lowest EQ averages (<0.2) are located in the urban agglomerations of
the northern slopes of the Tianshan Mountains in northwestern China,
which are characterized by arid climate and sparse vegetation. The region
is characterized by arid climate and sparse vegetation.

The results of Sen's slope method analysis can reflect the trend of EQ
change more effectively (Fig. 4b). The trend of EQ variation obtained
based on Sen's slope method shows that the annual variation rate of EQ of
urban agglomerations ranges from −0.0312 to 0.0334. In the recent 21
years, the EQ changes of 19 urban agglomerations in China are clearly
bounded by the Hu-line, with the west side of the line mainly in an im-
proved state and the east side in a deteriorated state. The trend pattern of
EQ time series from 2000 to 2020 has a significant spatial heterogeneity
(Fig. 4c), with about 42.11 % of urban agglomerations showing an improv-
ing trend and 21.05 % showing a significant improving trend (p < 0.05)
(e.g. Lanxi, Hubao-Yueyu urban agglomerations, etc.). These regions are
mainly located in the central and northwestern urban agglomerations of
China. About 57.79 % of the urban agglomerations showed deterioration,
and 21.05 % showed significant deterioration (p < 0.05) (e.g. Central
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Plains, Yangtze River Delta, Middle Reaches of Yangtze River urban
agglomerations, etc.), with significantly deteriorated urban agglomerations
mainly located in the eastern and southeastern coastal urban agglomera-
tions, which generally have higher EQ values.

4.2. Spatial–temporal analysis of EQ in urban agglomerations for 2000, 2010
and 2020

To further understand the development stages and spatial characteris-
tics of EQ of urban agglomerations, we analyzed the spatial and temporal
changes of EQ of urban agglomerations by stages and different scales in
three periods of 2000, 2010 and 2020, respectively (Fig. 5).

(1) From the pixel scale, the highest EQ pixel values were 0.929, 0.907,
and 0.865, in 2000, 2010, and 2020, respectively, while an optimal state
was found for 2010 (Fig. 5a). The mean values from 2000, 2010, and
2020 were 0.599, 0.601, and 0.598, respectively. The lowest values in
2000, 2010, and 2020 were 0.039, 0.008, and 0.033, respectively.

(2) On the municipal scale, cities with better EQ are mainly located in
Jilin Province in northeastern China, while cities with lower EQ are gener-
ally located in the northwestern arid zone, such as the cities of Turpan,
Changji, and Urumqi. Eighty percent of cities recorded an improved EQ
from 2000 to 2020, with the most noticeable improvement in Kuitun,
Zhoushan, Qinzhou, and Lanzhou (Fig. 5b). The remaining 20 % of cities
saw a deterioration in EQ, of which Zhengzhou, Ziyang, and Tianmen are
the most obvious.

(3) From the scale of urban agglomerations, the regions with lower EQ
are mainly regional-level and local urban agglomerations, while the
national-level urban agglomerations have a relatively positive EQ
(Fig. 5c). Taking the Hu-line as a boundary, it is found that the eastern
urban agglomerations have a generally higher EQ, including the Harbin–
Changchun, central and southern Liaoning, and Jinzhong urban agglomer-
ations. In contrast, the urban agglomerations on thewest side of the Hu-line
have a relatively low EQ. This can be attributed mainly to the fact that the
region is located in the northwest of China, far inland, with little precipita-
tion, low vegetation coverage, and a sensitive ecological environment. Over
the study period, the EQ of the urban agglomerations tended to improve
(most obviously in the urban agglomeration along the Yellow River in
Ningxia, and the Hubao–Egyu and Lanxi urban agglomerations), except
for the Central Plains, Central Guizhou, and Central Yunnan urban agglom-
erations, which showed a slight decline.

In summary, different scales were used to carry out the spatial and
temporal analysis of EQ over three periods in the Chinese urban agglomer-
ations. Taking the Hu-line as a boundary in spatial distribution, the EQ of
the eastern urban agglomerations is relatively better than that of the ag-
glomerations on the western side, with the high EQ values found mainly
in the Harbin–Changchun, central and southern Liaoning, Jinzhong,
Beijing–Tianjin–Hebei, and Beibu Gulf urban agglomerations. The analysis
of changes in EQ shows that the most obvious improvement is in the urban
agglomeration located on the Loess Plateau, indicating that the ecological
restoration (Yurui et al., 2021) and soil and water conservation measures
such as returning farmland to the forest (and grass), afforestation, and
wind and sand control have achieved visible results in this region.

4.3. Spatial agglomeration effect of EQ

4.3.1. Moran's I analysis
To further understand the spatial correlation of EQ in urban agglomer-

ations, the GeoDa spatial statistics tool was used to test the spatial autocor-
relation and cluster analysis of EQ in China's urban agglomerations in 2000,
2010, and 2020. Consequently, theMoran's I indexwas found to be positive
and above 0.65 for all of the urban agglomerations. In addition, all passed
the significance test at the 1 % level, thus indicating the existence of signif-
icant spatial autocorrelation of EQ in the urban agglomerations. Fig. 6
shows Moran's I index scores for 2000, 2010, and 2020 of 0.7403,
0.7074, and 0.6878, respectively, with the scatter pointsmainly distributed
in the first and third quadrants, thus indicating that the EQ of the urban



Fig. 4. Changes in EQ from 2000 to 2020.
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agglomerations in China has a strong positive spatial correlation and signif-
icant spatial clustering characteristics.

Spatial autocorrelation tests on individual city groups (Fig. 7) revealed
that the Moran's I index showed significant differences across years and
urban agglomerations, and almost all of them pass the significance test.
High Moran's I index scores were mainly found in the Harbin–Changchun,
Chengdu–Chongqing, Beijing-Tianjin-Hebei, Central and southern Liao-
ning, Shandong Peninsula, Central Changjiang River, and the Yangtze
River Delta urban agglomerations, which had significant agglomerations
of EQ. Lower Moran's I index scores were seen mainly in the Hubao–
Egyu, Jinzhong, Pearl River Delta, and Central Guizhou urban agglomera-
tions. Overall, the spatial agglomeration of each urban agglomerations
generally shows an increasing trend.

4.3.2. Analysis of spatial agglomeration
The spatial correlation characteristics of EQ in China's urban agglomer-

ations were determined from the above macroscopic analysis, and the
Getis-Ord Gi* index was used to depict the evolution trends of EQ cold
and hot spots, which can be used to further analyze whether EQ is spatially
heterogeneous at the local scale. Overall, Fig. 8 shows some apparent char-
acteristics of the division between the hot and cold spots of EQ in China's
urban agglomerations, using the Hu-line as a boundary. The urban agglom-
eration on the northern slope of the Tianshan Mountains, the Hubao–Egyu
7

urban agglomeration, the urban agglomeration along the Yellow River in
Ningxia, Chengdu-Chongqing urban agglomeration, and the Lanxi urban
agglomeration on the west side are generally cold-spot areas, indicating
that the urban agglomerations in this region have a poor EQ. The hot
spots on the eastern side of the Hu-line are concentrated in central China
(Jinzhong and Central Plains urban agglomeration, etc.) and in the north-
east (Central and southern Liaoning andHarbin–Changchun urban agglom-
erations). Since 2000, the share of cities in the hot spots has continued to
fall, while the percentage of cold spots has continued to rise. During the
study period, there was a gradual weakening of hot spots in areas such as
the Central Plains, Jinzhong, and Guanzhong urban agglomerations, and
the EQ gradually deteriorated; at the same time, there was a gradual weak-
ening of cold spots in areas such as the Pearl River Delta and theWest Coast
urban agglomerations, and the EQ improved.

4.4. Analysis of driving factors of EQ

4.4.1. Indicator selection
To explore the mechanisms underlying the spatial and temporal hetero-

geneity of EQ in China's urban agglomerations, it is necessary to focus on
the main drivers of EQ heterogeneity and the similarities and differences
in the drivers of EQ across time and regions. The spatio-temporal evolution
of EQ is a relatively complex process. Considering that the EQ of urban



Fig. 5. Spatial distribution of EQ at different scales in 2000, 2010, and 2020.
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agglomerations is influenced by various factors, this study mainly selects
the following 11 detection factors—Nighttime light index (X1), Population
density (X2), Temperature (X3), Precipitation (X4), Arable land area (X5),
Urbanization level (X6), Real GDP per capita (X7), PM2.5 (X8), Elevation
(X9), Built-up urban area (X10), and CO2 (X11)—for the detection analysis
of factors that drive EQ. First, using the GIS platform, the urban agglomer-
ations were sampled uniformly, with 233 sampling points. Second, the 11
Fig. 6.Moran's I scatter diagram of EQ in urban
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detection factors were discretized and categorized using reclassification
tools (Fig. 9) and then imported into the GeoDetectormodel for calculation.

4.4.2. Factor detection results of GeoDetector
The GeoDetector model was used to detect the EQ driver q for the urban

agglomerations, with a higher q-value indicating a greater driver of EQ. The
model thus measured the q-values of each detection factor’s ability to drive
agglomerations in 2000, 2010, and 2020.



Fig. 7.Moran's I index of EQ for urban agglomerations in China in 2000, 2010, and 2020.

Fig. 8. Spatial and temporal evolutionary patterns of EQ hot spots in 2000, 2010, and 2020.
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Fig. 9. Spatial distribution of Sen'trend reclassification of driving factors.
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EQ in urban agglomerations. The results show that (Table 1) the core
drivers being Elevation(X9), Population density (X2), Nighttime light
index (X1), Arable land area (X5), Real GDP per capita (X7), Precipitation
(X4), Built-up urban area (X10), all of which had an explanatory power
>10 % and are the most important drivers of EQ in urban agglomerations.
This study analyzed the explanatory power >10 % drivers and the results
are as follows.

Elevation influences EQ changes by acting on factors such as runoff
(Favis-Mortlock et al., 2022), climate (Zhao et al., 2021), and biology
(Zhang et al., 2021a; Zhou et al., 2021). Jiang et al. (2021) concluded
that elevation has a greater impact on the intensity of conflict in the natural
environment than socioeconomic factors. In the present study, a high driv-
ing force for the effect of elevation on EQ.

Urban agglomerations are areas of population and economic concentra-
tion where human activity impacts EQ. As an important social indicator,
population density is widely used in studies evaluating aspects including
urbanization, air quality, and ecology (Borck and Schrauth, 2021; Meng
and Han, 2018; Rahman and Alam, 2021). The population density in this
study has a high q-value, meaning it is a key driver of EQ.

The nighttime light index reflects, to a certain extent, people's nighttime
activities and a region's level of urban development. The nighttime light
index has been applied mainly in environmental assessment and urban
development (Feng et al., 2020; Kumar et al., 2019; Wang and Liu, 2017;
Zhang and Seto, 2011). For example, Ji et al. (2019) found a positive corre-
lation between the nighttime light index and environmental factors. Imhoff
et al. (1997) used the nighttime light index to estimate the impact of urban
land use on soil resources in the USA.
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Arable land area as a type of land use, its change affects the EQ. Arable
land area is the basic resource and condition for human to change the
surface to satisfaction of survival (Gong et al., 2020). This study found
that the change of arable land area has a high driving force on the EQ of
urban agglomerations.

Real GDP per capita as an important socio-economic factor has an
impact on the ecological environment. Related studies found a correlation
between GDP and ecology, ecological carrying capacity, land footprint
and waste utilization (Dai et al., 2022; Wu and Zhang, 2021; Chen et al.,
2021). This study verified the influence of Real GDP per capita on the EQ
of urban agglomerations.

Precipitation plays an important role in regulating surface runoff,
improving vegetation cover, and enhancing air quality; within a certain
range, it also has a positive effect on the ecological environment (Jiang
et al., 2021; Michaelides et al., 2009; Xiao et al., 2021).

Built-up urban area as a type of land use, its change affects the EQ. It is
common for scholars to study the ecological impacts of urban area through
urban expansion (Hou et al., 2022; Zheng and Qingyun, 2021). This study
further confirmed that the development change of the built-up urban area
has a driving effect on the change of the EQ.

4.4.3. Master driving analysis of anthropogenic impacts on EQ
The above concluded from the geodetector model that human activities

dominate the influence on EQ, except for precipitation and elevation.
Therefore, a further importance analysis of the human activity factor was
carried out using a stepwise regression model and spatialized mapping
(Fig. 10).



Table 1
Factor detection results of GeoDetector.

Code Index q statistic

X1 Nighttime light index 0.2007
X2 Population density 0.2258
X3 Temperature 0.0667
X4 Precipitation 0.1482
X5 Arable land area 0.1776
X6 Urbanization level 0.0263
X7 Real GDP per capita 0.1584
X8 PM2.5 0.0802
X9 Elevation 0.2324
X10 Built-up urban area 0.1233
X11 CO2 0.0379

L. Zhang et al. Science of the Total Environment 866 (2023) 161465
As shown in Fig. 9b, the results of the stepwise multiple regression
model of EQ drivers reveal the important influence of human factors on
EQ. As the geographical distribution of urban agglomerations in China
has significant spatial differences, the relationship between EQ and anthro-
pogenic factors varies with geographical location, showing significant
spatial heterogeneity. In general, Nighttime light index, Arable land area,
Population density and real GDP per capita are the main factors affecting
EQ, especially nighttime light index and arable land area, which dominate
57.89 % of urban agglomerations. Real GDP per capita dominates 15.78 %
of the urban agglomerations,which are locatedmainly in the eastern part of
China.

Overall, there are no single factors driving the changes in EQ, and differ-
ent drivers play a dominant role in different urban agglomerations (Fig. 10a
and b). In China's 19 urban agglomerations, nighttime lighting dominate
the change of EQ. The urban agglomerations dominated by nighttime light-
ing are mainly Harbin–Changchun, Central Yunnan, Central and southern
Liaoning, and the Northern slope of the Tianshan Mountains, of which
Harbin–Changchun urban agglomeration is the most significant, with a
relative contribution of 58.98 %. The real GDP per capita dominated
urban agglomerations include Beijing-Tianjin-Hebei, West Coast, and
Middle Reaches of Yangtze River, among which Beijing-Tianjin-Hebei
urban agglomeration is the most significant, with a relative contribution
rate of 34.92 %. The urban agglomerations dominated by population den-
sity include Shandong Peninsula, Guanzhong and along the Yellow River
in Ningxia, among which Shandong Peninsula urban agglomeration is the
most significant, with a relative contribution rate of 43.20 %. The urban
agglomerations dominated by arable land mainly include Chengdu-
Fig. 10. Spatial distribution of the anthropogenic domi
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Chongqing, Jinzhong, the Northern slope of the Tianshan Mountains and
Pearl River Delta, among which the most significant one is the Chengdu-
Chongqing urban agglomeration with a contribution rate of 55.60 %,
followed by the urban agglomeration on the northern slope of the Tianshan
Mountains with a contribution rate of 23.23 %.

5. Discussion

While urban agglomerations are the carriers of economic and social devel-
opment, rapid urbanization and industrialization processes have created a
series of ecological and environmental problems. This study has attempted
to solve the human–land problem of urban agglomeration development by
monitoring EQ changes through RS. “Promoting ecological civilization and
building a Beautiful China” is an important future development strategy for
the country and is also a popular topic of research and exploration in geogra-
phy. The key to the green, healthy, and sustainable development of Chinese
urban agglomerations lies in the scientific identification of the characteristics
and patterns of spatial changes in the EQ of those agglomerations and secur-
ing an accurate grasp of their driving factors and mechanisms. A further
discussion of the following aspects is based on the research in this study.

5.1. Analysis of driving factors of EQ

In the last 20 years, there has been not a single factor driving the change
in EQ. In contrast to previous studies (Wu and Zhang, 2021; Zhang et al.,
2022), we reveal that different drivers play a dominant role in different
urban agglomerations and are expressed spatially. In terms of drivers,
extensive research explains that human activities play a positive role in
ecological and vegetation improvement. For example, Zhang et al. (2022)
indicated the existence of perhaps positive ecological impacts of human
activities in studies of urban agglomeration on the northern slope of the
Tianshan Mountains. Meanwhile, in a study of vegetation, Guan et al.
(2021) found that human activities promoted the greening of vegetation.
In this study, we further found that human activities contributed to the
improvement of EQ and were particularly typical of the Hubao-Egyu
urban agglomeration (Fig. 4 and Fig. 10). Hubao-Egyu urban agglomera-
tion is located in a semi-arid region with severe soil erosion, and the EQ
has greatly improved within the last 20 years through a series of active
human activities and ecological projects. Grain for green is a national eco-
logical project in the central and western regions in China. This has led to
a generally significant improvement relative to urban agglomerations east
of the Hu-line, despite the relatively poor EQ base in the northwest.
nant factor for each urban agglomeration in China.
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5.2. Enriching the geographic application of Hu-line

TheHu-line (Hu, 1935), a boundary line used to describe the population
differences in China, is embodied in this study and perfectly fits the pattern
of east–west divergence in China on a large scale. Scholars widely use it as
an important geographic line in analyzing spatial differences, which pro-
vides a favorable reference for large-scale spatial studies (Fang et al.,
2016b; Kong et al., 2022; Ma et al., 2016; Zhang et al., 2020). In this
study, taking the Hu-line as a boundary, the east has fared better than the
west (Fig. 4c), eventually identifying the geospatial connection between
EQ and the Hu-line, which further enriching the scientific significance of
the Hu-line. This also represents a significant geographical finding of the
present study.

5.3. Potential applications and limitations

The novelty of this study lies in the fact that it comprehensively reveals
the spatial distribution characteristics of long-term serial EQ and the
evolution pattern of its spatial agglomeration in urban agglomerations
in China, in contrast to previous studies that only considered a single
perspective (Yang et al., 2021; Yuan et al., 2021)， and explains the driving
factors of EQ in combining GeoDetector and Stepwise multiple regression
models, providing a scientific basis for environmental protection policies
and the harmonious development of humans and land in urban agglomera-
tions in China. Therefore, the study provides an in-depth scientific analysis
of the spatial characteristics and driving mechanisms of EQ in Chinese
urban agglomerations based on different scales and elements, thus bridging
the gap in this area of research. In terms of data processing, his study used
long-term series data for analysis to ensure the scientific and objective
nature of the data. At the same time, we adopted multi-year averages in
analyzing typical years, which compensated to a certain extent for the
defects of RS data subject to environmental interference (Zhou et al., 2019).

There are some limitations to this study, various aspects of this study
also require improvement. The evaluation of EQ differed from that used
in previous assessments of the ecological risk and ecological footprint,
which were overly dependent on socioeconomic data. This also reflects
how the evaluation of EQ was limited to the indicators of RS image inver-
sion. The ecological environment and other elements are intertwined and
oftennot the product of the influence of one or two factors alone. Therefore,
future studies may consider a more comprehensive selection of RS indices,
while further analysis and research are needed to select the driving factors.
In addition to the 11 driving factors included in this study, a bold examina-
tion of the potential influence of other factors is recommended.

6. Conclusions

Using the GEE platform andMODIS satellite RS data, the EQ of 19 urban
agglomerations in China over a recent 21-year period has been dynamically
monitored and studied, and the spatial differentiation characteristics and
driving mechanisms of EQ of urban agglomerations in China have been
explored. The results reveal the following conclusions.

(1) The EQ of the urban agglomerations increased steadily between
2000 and 2020, with the mean value rising from 0.55 to 0.58. Taking the
Hu-line as a boundary, the east has fared better than the west. Specifically,
the low EQ areas aremainly the urban agglomeration on the northern slope
of the Tianshan Mountains, the urban agglomeration along the Yellow
River in Ningxia, and the Hubao–Egyu urban agglomeration. The high EQ
areas are primarily the Harbin–Changchun, central and southern Liaoning,
Jinzhong, and Beibu Gulf urban agglomerations.

(2) During the study period, the EQ of the Central Plains, Central
Guizhou, and Central Yunnan urban agglomerations fell slightly, while
the EQ of the remaining urban agglomerations improved, accounting for
about 84 % of the total number of urban agglomerations.

(3) Moran's I index was used to indicate the significant spatial agglom-
eration characteristics of EQ, with hot spots concentrated mainly in the re-
gions to the east (the Central and southern Liaoning, Harbin–Changchun,
12
Jinzhong, and Central Plains urban agglomerations, etc.) and cold spots
concentrated mainly in the regions to the west (the northern slope of the
Tianshan Mountains, Hubao–Egyu, Lanxi, and the urban agglomeration
along the Yellow River in Ningxia, etc.).

(4) The elevation, population density, nighttime light index, arable land
area, real GDP per capita, precipitation, and built-up urban area could
explain the spatial changes in China's EQ to a certain extent. The stepwise
multiple regression model spatially reveals that the nighttime light index,
Built-up urban area and GDP per capita dominate the ecological quality
changes of urban agglomerations, accounting for 73.68 % of the total
number of urban agglomerations.

This study provides a scientific basis for implementing feasible ecologi-
cal protection policies in urban agglomerations and provides scientific sup-
port for the construction of ecological civilization and the development of
human–land harmony, with a view to actively promoting the construction
of a “Beautiful China”.
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